HAEMOGLOBIN PORT PHILLIP α91 (FG3) LEU→PRO

A new unstable haemoglobin

Steven O. BRENNAN

Clinical Biochemistry Department, Christchurch Hospital, Christchurch, New Zealand

and

Geoffrey P. TAURO and Wayne MELROSE

Haematology Department, Royal Childrens Hospital, Melbourne, Australia

and

Robin W. CARRELL

University Department of Clinical Biochemistry, Addenbrookes Hospital, Hills Rd., Cambridge, CB22QR, England

Received 1 July 1977

1. Introduction

A Chinese female laboratory technician had a mild anaemia, initially thought to be thalassaemia. On further investigation a new abnormal haemoglobin (Hb Port Phillip) was identified with the substitution leucine to proline at residue 91 (FG3) of the α -chain. This mutation will cause the loss of a haem contact which explains the decreased stability of the haemoglobin. There is also a general distortion of the FG corner that should provide a test of currently proposed mechanisms for the co-operative interaction of haemoglobin subunits.

2. Methods

Standard procedures were used for the haematological investigations including haemoglobin stability tests [1] and for the detection, isolation and identification of the abnormal haemoglobin [2]. Tryptic digestion and peptide mapping were carried out as described by Watson-Williams et al. [3]. Quantitation of Hb Port Phillip was by elution from DEAE—Sephadex [4], peak areas were calculated by triangulation. Separation of α - and β -chains and subsequent aminoethylation was carried out as described by Clegg et al. [5].

Digestion with thermolysin was carried out overnight at 37°C. The peptide was dissolved in 1 ml 0.2 M ammonium bicarbonate and 0.1 ml thermolysin (2 mg/ml in water) was added.

3. Results

3.1. Haematological findings

The haemoglobin level (10.7 g/100 ml), the mean cell volume (76 fl) and the packed cell volume (34%) were all low (normal values, 12-16 g/100 ml, 80-95 fl and 37-47%, respectively). The reticulocyte count (3-4%) and the HbF (5%) and HbA₂ (3.7%) levels were raised (normal values 0.2-2%, less than 0.8% and 1.8-3.3%, respectively).

Precipitates were obtained from haemolysates with both the heat [1] and isopropanol stability tests [6].

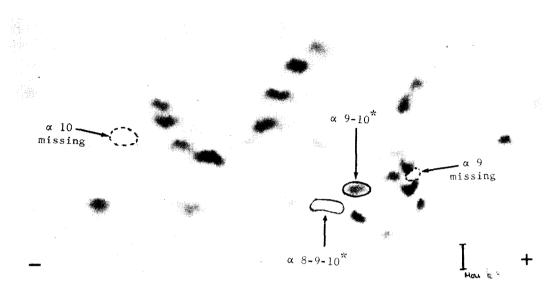


Fig.1. Tryptic peptide map of Hb Port Phillip. Electrophoresis, at pH 6.5, ascending chromatography in pyridine/isoamyl alcohol/water (6:6:7, v/v/v).

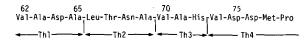
The isopropanol precipitate represented 5% of the total haemoglobin. Starch gel electrophoresis, at pH 8.6, indicated the presence of an additional band running in the same position as HbF. A similar slow running HbA₂ band was also present. On chromatography on DEAE—Sephadex [4] Hb Port Phillip ran as a shoulder on the HbA peak whilst the HbF eluted after the HbA. Quantitation showed that the new haemoglobin formed 7% of the total haemoglobin.

3.2. Structural studies

The unstable haemoglobin component was isolated by preparative isopropanol precipitation [6]. Starch gel electrophoresis, pH 8.6, in 6 M urea, of the precipitated globin demonstrated that no change was present on either the α - or β -chain.

Tryptic peptide maps indicated that the arginine-containing peptide $\alpha 10$ and the methionine-containing peptide $\alpha 9$ were missing. Two new arginine and methionine-staining spots were present, $\alpha 9-10^*$ and $\alpha 8-9-10^*$ (fig.1).

The abnormal α -chain was isolated by chromatography of the isopropanol-precipitated globin on CM-cellulose in 8 M urea [5]. After aminoethylation, tryptic peptide maps were prepared of the abnormal α -chain. These maps confirmed that a new peptide


 $(\alpha 9-10*)$ was present. This peptide was eluted with 0.1 M ammonium hydroxide from four preparative fingerprints. One quarter of the eluted material was taken for amino acid analysis which indicated (table 1) a composition similar to $\alpha 9$ except that two additional residues, proline and arginine, were present.

This evidence suggested a mutation of $\alpha 91$ Leu-Pro. In order to confirm this the remaining peptide material was digested with thermolysin. A thermolytic peptide map appeared normal except

 $Table \ 1$ Amino acid composition of peptide $\alpha 9{-}10^*$ from Hb

Amino acid	Observed molar ratio α9-10*	Expected molar ratio	
		α9	α10
Asp	6.1	6	_
Thr	1.1	1	_
Ser	2.0	2	_
Pro	2.0	1	_
Ala	6.8	7	_
Val	2.5 ^a	3	_
Leu	4.5	4	1
Lys	1.2	1	_
His	2.7	3	_
Arg	1.1	0	1

a N-Terminus, partially destroyed by reaction with ninhydrin

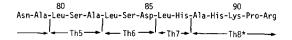


Fig. 2. Thermolytic peptides (Th) produced on cleavage of peptides $\alpha 9-10^*$ from Hb Port Phillip.

that a basic peptide Th8* (fig.2) stained positively for arginine. Peptide Th8* was isolated by preparative peptide mapping and eluted in 6 M hydrochloric acid. Amino acid analysis indicated a composition of, Ala, His, Lys, Pro, Arg, compatible with the electrophoretic mobility of the peptide [7].

These results confirm that this is a new haemoglobin with the substitution $\alpha 91$ (FG3) leucine to proline, the presence of a proline distal to lysine $\alpha 90$ preventing tryptic cleavage and giving rise to the new peptide $\alpha 9-10$.

4. Discussion

This is the first mutation found at residue FG3 in either the α -, β -, γ - or δ -chains of haemoglobin. Both this leucine and its neighbouring residue, valine FG5, form contacts with the haem group and play a critical part in the co-operative effects between subunits that occur on oxygenation [8,9]. The steric situation and proposed role of the α 91 leucine are well illustrated by Gelin and Karplus [10]. They propose that this leucine contributes to the tilting of

the haem group and the movement of the FG corner that occurs on oxygenation.

The loss of a haem contact and general perturbation that results from the substitution of a proline for the leucine explains the decreased haemoglobin stability and consequent haemolytic anaemia [11]. It will be of interest to study further the structural and functional alterations in relation to co-operative effects since this mutation should provide a test of proposals for the direct transmission of tertiary changes to other subunits through the FG corner [10].

Acknowledgements

This work was supported in part by the Medical Research Council of New Zealand.

References

- [1] Dacie, J. V. and Lewis, S. M. (1975) in: Practical Haematology, 5th edn. Churchill, London.
- [2] Lehmann, H. and Huntsman, R. G. (1974) in: Man's Haemoglobins, 2nd edn., Norht-Holland, Amsterdam.
- [3] Watson-Williams, E. J., Beale, D., Irvine, D. and Lehmann, H. (1965) Nature 205, 1273-1276.
- [4] Huisman, T. H. J. and Dozy, A. M. (1965) J. Chormatogr. 19, 160-169.
- [5] Clegg, J. B., Naughton, M. A. and Weatherall, D. J. (1965) Nature 207, 945-947.
- [6] Carrell, R. W. and Kay, R. (1972) Brit. J. Haemat. 23, 615-619.
- [7] Offord, R. E. (1966) Nature 211, 591-593.
- [8] Perutz, M. F. (1970) Nature 228, 726-734.
- [9] Fermi, G. (1975) J. Mol. Biol. 97, 237–256.
- [10] Gelin, B. R. and Karplus, M. (1977) Proc. Natl. Acad. Sci. USA 74, 801-805.
- [11] Carrell, R. W. and Lehmann, H. (1969) Semi. Hematol. 6, 116-132.